· 

三角関数と双曲線関数

■定義

 \(sec \theta =\displaystyle\frac{1}{cos \theta}\)  \(sech \theta =\displaystyle\frac{1}{cosh \theta}\)

 

 \(csc \theta =\displaystyle\frac{1}{sin \theta}\)  \(csch \theta =\displaystyle\frac{1}{sinh \theta}\)

 

 \(cot \theta =\displaystyle\frac{1}{tan \theta}\)  \(coth \theta =\displaystyle\frac{1}{tanh \theta}\)

 

 

■相互関係

 \(sin^2 \theta + cos^2\theta=1\)  \(cosh^2 \theta - sinh^2 \theta=1\)

 \(sec^2 \theta - tan^2 \theta=1\)  \(sech^2 \theta + tanh^2 \theta=1\)

 \(csc^2 \theta - cot^2 \theta=1\)  \(coth^2 \theta - csch^2 \theta=1\)

 

 

■倍角

 \(cos 2\theta = cos^2 \theta - sin^2 \theta\)

      \(=1-2sin^2 \theta \)

      \(=2cos^2 \theta -1\)

 

 \(tan 2\theta = \displaystyle\frac{2 tan \theta}{1-tan^2\theta}\)

 

 \(sinh2\theta=2sinh\theta cosh\theta\)

 \(cosh2\theta=cosh^2\theta +sinh^2\theta\)

 \(tanh2\theta=\displaystyle\frac{2tanh\theta}{1+tanh^2\theta}\)

 

 

■2乗

 \(sin^2 \theta = \displaystyle\frac{1-cos 2\theta}{2}\)

 

 \(cos^2 \theta = \displaystyle\frac{1+cos 2\theta}{2}\)

 

 \(sinh^2 \theta = \displaystyle\frac{cosh 2\theta-1}{2}\)

 

 \(cosh^2 \theta = \displaystyle\frac{cosh 2\theta+1}{2}\)

 

 

■三角関数と双曲線関数の相互関係

 \(cos \theta =cosh i \theta   cosh \theta = cos i \theta\)

 \(isin \theta = sinh i \theta   isinh \theta = sin i \theta\)

 

 

■指数による定義

 \(sinh \theta = \displaystyle\frac{1}{2}(e^x-e^{-x})\)

 

 \(cosh \theta = \displaystyle\frac{1}{2}(e^x+e^{-x})\)

 

 

■ドモアブルの定理

 \((cos \theta + i sin \theta )^n= e^{in\theta}=cosn \theta +i sin n \theta\)

 

 

■微分

 \((sin ax)'=acos ax\)  \((sec ax)'=asec ax・tan ax\)

 \((cos ax)'=-asin ax\)  \((csc ax)'=-acsc ax・cot ax\)

 \((tan ax)'=asec^2 ax\)  \((cot ax)'=-acsc^2ax\)

 

 \((sinh ax)'=acosh ax\)  \((sech ax)'=-asech ax・tanh ax\)

 \((cosh ax)'=asinh ax\)  \((csch ax)'=-acsch ax・coth ax\)

 \((tanh ax)'=asech^2 ax\)  \((coth ax)'=-acsch^2 ax\)